COVID-19 and Special Populations

Last Updated: October 9, 2020

To date, most of the data generated about the epidemiology, clinical course, prevention, and treatment of COVID-19 have come from studies of nonpregnant adults. More information is urgently needed regarding COVID-19 in other patient populations, such as in children, pregnant individuals, and other populations as outlined in the following sections of the Guidelines.

Although children with COVID-19 may have less severe disease overall than adults with COVID-19, the recently described multisystem inflammatory syndrome in children (MIS-C) requires further study. Data are also emerging on the clinical course of COVID-19 in pregnant patients, pregnancy outcomes in the setting of COVID-19, and vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are special considerations for transplant recipients, patients with cancer, persons with HIV, and patients with other immunocompromising conditions, as some of these patients may be at increased risk of serious complications as a result of COVID-19.

The following sections review the available data on COVID-19 in some of these populations and discuss the specific considerations that clinicians should take into account for the prevention and treatment of SARS-CoV-2 infections in these populations.
Special Considerations in Pregnancy

Epidemiology of COVID-19 in Pregnancy

Initial reports of COVID-19 disease acquired in the third trimester were reassuring, although most early data were limited to case reports and case series. Since that time, a large population-based cohort study in the United Kingdom evaluated outcomes in pregnant women hospitalized with confirmed severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Among 427 pregnant women admitted to 197 obstetric units across the United Kingdom, the rates of critical care admission and severe SARS-CoV-2-associated maternal mortality were similar to those in the general population of women of reproductive age hospitalized with COVID-19 in the United Kingdom, although the pregnant women were not compared with age-matched, nonpregnant controls.

In June 2020, the Centers for Disease Control and Prevention (CDC) released surveillance data evaluating SARS-CoV-2-related outcomes in reproductive aged women by pregnancy status. Among 326,335 women aged 15 to 44 years with positive test results for SARS-CoV-2, pregnant women were more likely to be hospitalized, be admitted to an intensive care unit (ICU), and receive mechanical ventilation. However, the overall absolute increase in rates of ICU admission and mechanical ventilation was low among the pregnant women and the nonpregnant women (1.5% vs. 0.9% for ICU admission, respectively, and 0.5% vs 0.3% for mechanical ventilation, respectively). COVID-19-related death rates were similar in the pregnant and nonpregnant populations. Pregnancy outcomes such as preterm birth or pregnancy loss were not evaluated.
This analysis has a number of significant limitations, including:

- Pregnancy status was only available for 28% of the women of reproductive age with SARS-CoV-2 infection.
- It was not possible to determine whether the reasons for hospitalization, ICU admission, or mechanical ventilation were related to COVID-19, pregnancy, and/or delivery.

Pregnant women who are Hispanic or Black may be disproportionately affected by SARS-CoV-2 infection. Pregnant women should be counseled about the potential for severe disease from SARS-CoV-2 and measures to protect themselves and their families from infection, including physical distancing, face coverings, and hand hygiene. CDC, ACOG, and SMFM highlight the importance of accessing prenatal care. ACOG provides an FAQ on using telehealth to deliver antenatal care, when appropriate.

ACOG has developed an algorithm to evaluate and manage pregnant outpatients with suspected or confirmed SARS-CoV-2 infection. As in nonpregnant patients, SARS-CoV-2 infection in pregnant patients can present as asymptomatic/presymptomatic disease or with a wide range of clinical manifestations, from mild symptoms that can be managed with supportive care at home to severe disease and respiratory failure requiring ICU admission. As with other patients, in the pregnant patient with symptoms compatible with COVID-19, the illness severity, underlying comorbidities, and clinical status should all be assessed to determine whether in-person evaluation for potential hospitalization is needed.

If hospitalization is indicated, care should be provided in a facility that can conduct maternal and fetal monitoring, when appropriate. The management of COVID-19 in the pregnant patient may include:

- Fetal and uterine contraction monitoring, when appropriate, based on gestational age
- Individualized delivery planning
- A multispecialty, team-based approach that may include consultation with obstetric, maternal-fetal medicine, infectious disease, pulmonary and critical care, and pediatric specialists, as appropriate.

Other recommendations on the management of COVID-19, as outlined for the nonpregnant patient, also apply in pregnancy.

Timing of Delivery

- Detailed guidance relating to timing of delivery and risk of vertical transmission of SARS-CoV-2 is provided by ACOG. In most cases, the timing of delivery should be dictated by obstetric indications rather than maternal diagnosis of COVID-19. For women who had suspected or confirmed COVID-19 early in pregnancy who recover, no alteration to the usual timing of delivery is indicated.
- Vertical transmission of SARS-CoV-2 via the transplacental route appears to be rare but possible.

Management of COVID-19 in the Setting of Pregnancy

- Potentially effective treatment for COVID-19 should not be withheld from pregnant women because of theoretical concerns related to the safety of therapeutic agents in pregnancy (AIII).
- Decisions regarding the use of drugs approved for other indications or investigational agents for the treatment of COVID-19 in pregnant patients must be made with shared decision-making between the patient and the clinical team, considering the safety of the medication for the woman...
and the fetus and the severity of maternal disease. For detailed guidance on the use of COVID-19 therapeutic agents in pregnancy, please refer to the pregnancy considerations subsection of each individual section of the Guidelines.

- To date, most SARS-CoV-2-related clinical trials have excluded, or included only a very few, pregnant women and lactating women. This limitation makes it difficult to make evidence-based recommendations on the use of SARS-CoV-2 therapies in these vulnerable patients and potentially limits their COVID-19 treatment options. When possible, pregnant women and lactating women should not be excluded from clinical trials of therapeutic agents or vaccines for SARS-CoV-2 infection.

Post-Delivery

- Specific guidance for post-delivery management of infants born to mothers with known or suspected SARS-CoV-2 infection, including breastfeeding recommendations, is provided by the CDC and the American Academy of Pediatrics.

References

Data on disease severity and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children are limited. Overall, several large epidemiologic studies suggest that acute disease manifestations are substantially less severe in children than in adults, although there are reports of children with COVID-19 requiring intensive care unit (ICU)-level care.1-11 Recently, SARS-CoV-2 has been associated with a potentially severe inflammatory syndrome in children (multisystem inflammatory syndrome in children [MIS-C], which is discussed below). Preliminary data from the Centers for Disease Control and Prevention (CDC) also show that hospitalization rates and ICU admission rates for children are lower than for adults. Severe cases of COVID-19 in children were associated with younger age and underlying conditions, although a significant number of the pediatric cases did not have complete data available at the time of the preliminary report. Without widespread testing, including for mild symptoms, the true incidence of severe disease in children is unclear. Data on perinatal vertical transmission to neonates are limited to small case series with conflicting results; some studies have demonstrated lack of transmission, whereas others have not been able to definitively rule out this possibility.12-14 Specific guidance on the diagnosis and management of COVID-19 in neonates born to mothers with known or suspected SARS-CoV-2 infection is provided by the CDC.

Insufficient data are available to clearly establish risk factors for severe COVID-19 disease in children. Based on adult data and extrapolation from other pediatric respiratory viruses, severely immunocompromised children and those with underlying cardiopulmonary disease may be at higher risk for severe disease. Children with risk factors recognized in adults, including obesity, diabetes, and hypertension, may also be at risk, although there are no published data supporting this association and insufficient data to guide therapy. Guidance endorsed by the Pediatric Infectious Diseases Society has recently been published, which provides additional specific risk categorization when considering therapy.15 As data emerge on risk factors for severe disease, it may be possible to provide more directed guidance for specific populations at high risk for COVID-19 and to tailor treatment recommendations accordingly.

Currently, remdesivir is the only drug approved by the Food and Drug Administration (FDA) for the treatment of COVID-19 in hospitalized patients (see Remdesivir for detailed information). It is approved for children with COVID-19 who are aged ≥12 years and weigh ≥40 kg. Remdesivir is also available for younger children (and those weighing <40 kg and >3.5 kg) through an FDA Emergency Use Authorization.

For other agents outlined in these guidelines, there are insufficient data to recommend for or against the use of specific antivirals or immunomodulatory agents for the treatment of COVID-19 in pediatric patients. General considerations such as underlying conditions, disease severity, and potential for drug toxicity or drug interactions may inform management decisions on a case-by-case basis. Enrollment of children in clinical trials should be prioritized when trials are available. A number of additional drugs are being investigated for the treatment of COVID-19 in adults; clinicians can refer to the considerations in children subsection of each individual section of the Guidelines for more information on using these drugs in children.

Multisystem Inflammatory Syndrome in Children

Emerging reports from Europe and the United States have suggested that COVID-19 may be associated with MIS-C (also referred to as pediatric multisystem inflammatory syndrome–temporally associated with SARS-CoV-2 [PMIS-TS]). The syndrome was first described in the United Kingdom, where previously healthy children with severe inflammation and Kawasaki disease-like features were identified.
to have current or recent infection with SARS-CoV-2.16,17 Additional cases of MIS-C have been reported in other European countries, including Italy and France.18,19 Emerging data suggest that MIS-C may be associated with pediatric patients who are slightly older than children typically seen with Kawasaki disease, and some cases of MIS-C in young adults have been reported.

In the United States, from April 16 through May 4, 2020, the New York City Department of Health and Mental Hygiene received reports of 15 hospitalized children with clinical presentation consistent with MIS-C. Subsequently, the New York State Department of Health has been investigating several hundred cases and a few deaths in children with similar presentations, many of whom tested positive for SARS-CoV-2 infection by reverse transcriptase polymerase chain reaction (PCR) or serology.20 Several other states are now reporting cases consistent with MIS-C.

The current case definition for MIS-C can be found on the CDC website. This case definition, which may evolve as more data become available, includes:

- Fever, laboratory evidence of inflammation, and evidence of clinically severe illness requiring hospitalization, with multiorgan involvement, and
- No alternate diagnosis, and
- Recent or current SARS-CoV-2 infection or exposure to COVID-19.

From the available data, patients with MIS-C present with persistent fever, evidence of systemic inflammation, and a variety of signs and symptoms of multiorgan system involvement, including cardiac, gastrointestinal, renal, hematologic, dermatologic, and neurologic involvement.

Some patients who meet criteria for MIS-C also meet criteria for complete or incomplete Kawasaki disease. An observational study compared data from Italian children with Kawasaki-like illness that was diagnosed before and after the onset of the SARS-CoV-2 epidemic. The data suggest that the SARS-CoV-2-associated cases occurred in children who were older than the children with Kawasaki-like illness diagnosed prior to the COVID-19 epidemic. In addition, the rates of cardiac involvement, associated shock, macrophage activation syndrome, and need for adjunctive steroid treatment were higher for the SARS-CoV-2-associated cases.18 Many patients with MIS-C have abnormal markers of cardiac injury or dysfunction, including troponin and brain natriuretic protein. Echocardiographic findings include impaired left ventricular function, as well as coronary artery dilations, and rarely, coronary artery aneurysms. At presentation, few patients are SARS-CoV-2 PCR positive (nasopharyngeal or nasal swab or stool sample), but most have detectable antibodies to SARS-CoV-2. Emerging observations suggest that there may be a wider range of severity of symptoms than initially recognized. Epidemiologic and clinical data suggest that MIS-C may represent a post-infectious inflammatory phenomenon rather than a direct viral process. The role of asymptomatic infection and the pattern of timing between SARS-CoV-2 infection and MIS-C are not well understood, and currently a causal relationship is not established.

Currently, there is limited information available about risk factors, pathogenesis, clinical course, and treatment for MIS-C. Supportive care remains the mainstay of therapy. There are currently insufficient data for the COVID-19 Treatment Guidelines Panel to recommend either for or against any therapeutic strategy for the management of MIS-C. Although no definitive data are available, many centers consider the use of intravenous immune globulin, steroids, and other immunomodulators (including interleukin-1 and interleukin-6 inhibitors) for therapy, and antiplatelet and anticoagulant therapy. The role of antiviral medications that specifically target SARS-CoV-2 is not clear at this time. MIS-C management decisions should involve a multidisciplinary team of pediatric specialists in intensive care, infectious diseases, cardiology, hematology, and rheumatology.
References

People who are being treated for cancer may be at increased risk of severe COVID-19, and their outcomes are worse than individuals without cancer. A meta-analysis of 46,499 patients with COVID-19 showed that all-cause mortality (risk ratio 1.66; 95% CI, 1.33–2.07) was higher in patients with cancer, and that patients with cancer were more likely to be admitted to intensive care units (risk ratio 1.56; 95% CI, 1.31–1.87). The risk for immunosuppression and susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection varies between cancer types, treatments administered, and stages of therapy (e.g., patients who are actively being treated compared to those in remission). In a study that used data from the COVID-19 and Cancer Consortium Registry, cancer patients who were in remission or who had no evidence of disease were at a lower risk of death from COVID-19 than those who were receiving active treatment. It is unclear whether cancer survivors are at increased risk for severe COVID-19 and its complications compared to people without a history of cancer.

Many organizations have outlined recommendations for treating patients with cancer during the COVID-19 pandemic, such as:

- National Comprehensive Cancer Network (NCCN)
- American Society of Hematology
- American Society of Clinical Oncology
- Society of Surgical Oncology
- American Society for Radiation Oncology
- International Lymphoma Radiation Oncology Group

This section of the COVID-19 Treatment Guidelines complements these sources and focuses on considerations regarding testing for SARS-CoV-2, management of COVID-19 in patients with cancer, and management of cancer-directed therapies during the COVID-19 pandemic. The optimal
management and therapeutic approach to COVID-19 in this population has not yet been defined.

Testing for COVID-19 in Patients With Cancer

The COVID-19 Treatment Guidelines Panel (the Panel) recommends molecular diagnostic testing for SARS-CoV-2 in patients with cancer who develop signs and symptoms of COVID-19 (AIII).

Patients with cancer who are receiving chemotherapy are at risk of developing neutropenia. The NCCN Guidelines for Hematopoietic Growth Factors categorizes cancer treatment regimens based on the risk of developing neutropenia. A retrospective study suggests that cancer patients with neutropenia have a higher mortality rate if they develop COVID-19.7 Due to the potential risk of poor clinical outcomes in the setting of neutropenia and/or during the perioperative period, the Panel recommends performing molecular diagnostic testing for SARS-CoV-2 prior to procedures that require anesthesia and before initiating cytotoxic chemotherapy and long-acting biologic therapy (BIII).8,9

General Guidance on Medical Care for Cancer Patients During the COVID-19 Pandemic

Patients with cancer frequently engage with the health care system to receive treatment and supportive care for cancer and/or treatment-related complications. Telemedicine can minimize the need for in-person services and reduce the risk of SARS-CoV-2 exposure. The Centers for Disease Control and Prevention published a framework to help clinicians decide whether a patient should receive in-person or virtual care during the COVID-19 pandemic; this framework accounts for factors such as the potential harm of delayed care and the degree of SARS-CoV-2 transmission in a patient’s community.10 Telemedicine may improve access to providers for medically or socially vulnerable populations but could worsen disparities if these populations have limited access to technology. Nosocomial transmission of SARS-CoV-2 to patients and health care workers has been reported.11-13 Principles of physical distancing and prevention strategies, including masking patients and health care workers and practicing hand hygiene, apply to all in-person interactions.14

Decisions about treatment regimens, surgery, and radiation therapy for the underlying malignancy should be made on an individual basis depending on the biology of the cancer, the need for hospitalization, the number of clinic visits required, and the anticipated degree of immunosuppression. Several key points should be considered:

- If possible, treatment delays should be avoided for curable cancers that have been shown to have worse outcomes when treatment is delayed (e.g., pediatric acute lymphoblastic leukemia).
- When deciding between equally effective treatment regimens, regimens that can be administered orally or those that require fewer infusions are preferred.15,16
- The potential risks of drug-related lung toxicity (e.g., from using bleomycin or PD1 inhibitors) must be balanced with the clinical efficacy of alternative regimens or the risk of delaying care.17
- Preventing neutropenia can decrease the risk of neutropenic fever and the need for emergency room evaluation and hospitalization during the COVID-19 pandemic. Granulocyte colony-stimulating factor (G-CSF) should be given with chemotherapy regimens that have intermediate (10% to 20%) or high (>20%) risks of febrile neutropenia.18
- Cancer treatment regimens that do not affect outcomes of COVID-19 in cancer patients may not need to be altered. In a prospective observational study, receipt of immunotherapy, hormonal therapy, or radiotherapy in the month prior to SARS-CoV-2 infection was not associated with an increased risk of mortality among cancer patients with COVID-19.19 A retrospective study from Italy evaluated the incidence of SARS-CoV-2 infection in patients with prostate cancer and
found that 114 of 37,161 patients (0.3%) who were treated with therapies other than androgen deprivation therapy became infected, compared to four of 5,273 patients (0.08%) who were treated with androgen deprivation therapy (OR 4.05; 95% CI, 1.55–10.59). The viral spike proteins required for cell entry of SARS-CoV-2 are primed by TMPRSS2, an androgen-regulated gene. Whether androgen deprivation therapy protects against SARS-CoV-2 infection requires further investigation in larger cohorts.\(^{20}\)

- Radiation therapy guidelines suggest increasing the dose per fraction and reducing the number of daily treatments in order to minimize the number of hospital visits during the COVID-19 pandemic.\(^{15,16}\)

Blood supply shortages will likely continue during the COVID-19 pandemic due to social distancing, cancellation of blood drives, and infection among donors. Revised donor criteria have been proposed by the Food and Drug Administration to increase the number of eligible donors.\(^{21}\) In patients with cancer, lowering the transfusion thresholds for blood products (e.g., red blood cells, platelets) in asymptomatic patients should be considered.\(^{22,23}\) At this time, there is no evidence that COVID-19 can be transmitted through blood products.\(^{24,25}\)

Febrile Neutropenia

Cancer patients with febrile neutropenia should undergo molecular diagnostic testing for SARS-CoV-2 and evaluation for other infectious agents; they should also be given empiric antibiotics, as outlined in the NCCN Guidelines.\(^{26}\) Low-risk febrile neutropenia patients should be treated at home with oral antibiotics or intravenous infusions of antibiotics to limit nosocomial exposure to SARS-CoV-2. Patients with high-risk febrile neutropenia should be hospitalized per standard of care.\(^{26}\) Empiric antibiotics should be continued per standard of care in patients who test positive for SARS-CoV-2. Clinicians should also continuously evaluate neutropenic patients for emergent infections.

Treating COVID-19 and Managing Chemotherapy in Patients With Cancer and COVID-19

Retrospective studies suggest that patients with cancer who were admitted to the hospital with SARS-CoV-2 infection have a high case fatality rate, with higher rates observed in patients with hematologic malignancies than in those with solid tumors.\(^{27,28}\)

Recommendations for treatment of COVID-19 are the same for cancer patients as for the general population (AIII) (see Potential Antiviral Drugs Under Evaluation for the Treatment of COVID-19 and Immunomodulators Under Evaluation for the Treatment of COVID-19). Dexamethasone treatment in patients with COVID-19 who require supplemental oxygen or mechanical ventilation has been associated with a lower mortality rate.\(^{29}\) In cancer patients, dexamethasone is commonly used to prevent chemotherapy-induced nausea, as a part of tumor-directed therapy, and to treat inflammation associated with brain metastasis. The side effects of using dexamethasone to treat SARS-CoV-2 are not anticipated to be different between patients with or without cancer. If possible, treatments that are not currently recommended for SARS-CoV-2 infection should be administered as part of a clinical trial, since the safety and efficacy of these agents have not been well defined in patients with cancer.

The NCCN recommends discontinuing G-CSF and granulocyte-macrophage colony-stimulating factor in patients with cancer and acute SARS-CoV-2 infection who do not have bacterial or fungal infections to avoid the hypothetical risk of increasing inflammatory cytokines and pulmonary inflammation.\(^{18,30}\) Secondary infections (e.g., invasive pulmonary aspergillosis) have been reported in critically ill patients with COVID-19.\(^{31,32}\)
Decisions about administering cancer-directed therapy to patients with acute COVID-19 and those who are recovering from COVID-19 should be made on a case-by-case basis; clinicians should consider the indication for chemotherapy, the goals of care, and the patient’s history of tolerance to the treatment (BIII). The optimal duration of time between resolution of infection and initiating or restarting cancer-directed therapy is unclear. Withholding treatment until COVID-19 symptoms have resolved is recommended, if possible. Prolonged viral shedding (detection of SARS-CoV-2 by molecular testing) may occur in cancer patients, although it is unknown how this relates to infectious virus and how it impacts outcomes. Therefore, there is no role for repeat testing in those recovering from COVID-19, and the decision to restart cancer treatments in this setting should be made on a case-by-case basis. The Panel recommends that clinicians who are treating COVID-19 in patients with cancer consult with a hematologist or oncologist before adjusting cancer-directed medications (AIII).

Medication Interactions

The use of potential antiviral or immune-based therapies to treat COVID-19 can present additional challenges in cancer patients. Clinicians should pay careful attention to potential drug-drug interactions and overlapping toxicities between drugs that are used to treat COVID-19 and cancer-directed therapies, prophylactic antimicrobials, corticosteroids, and other medications (AIII).

Several anti-neoplastic medications have known interactions with therapies that are being investigated for COVID-19. Tocilizumab can interact with vincristine and doxorubicin. Any COVID-19 therapy that may cause QT prolongation must be used with caution in patients treated with venetoclax, gilteritinib, and tyrosine kinase inhibitor therapy (e.g., nilotinib). Dexamethasone is commonly used as an antiemetic for cancer patients and is recommended for treatment of certain patients with COVID-19 (see Corticosteroids for more information). Dexamethasone is a weak to moderate cytochrome P450 (CYP) 3A4 inducer; therefore, interactions with any CYP3A4 substrates need to be considered. Lopinavir/ritonavir is a CYP3A4 inhibitor, and it can increase methotrexate, vincristine, or ruxolitinib concentrations. Lopinavir/ritonavir is not recommended for the treatment of COVID-19; however, patients may receive it in a clinical trial. In general, concomitant use of lopinavir/ritonavir and CYP3A4 substrates should be avoided. If lopinavir/ritonavir is used in combination with a cytotoxic drug that is also a CYP34A substrate, clinicians should monitor for toxicities of the cytotoxic drug and adjust the dose if necessary.

Special Considerations in Children

Preliminary published reports suggest that pediatric patients with cancer may have milder manifestations of COVID-19 than adult patients with cancer, although larger studies are needed. Guidance on managing children with cancer during the COVID-19 pandemic is available from an international group with input from the International Society of Paediatric Oncology, the Children’s Oncology Group, St. Jude Global, and Childhood Cancer International. Two publications include guidance for managing specific malignancies, guidance for supportive care, and a summary of web links from expert groups that are relevant to the care of pediatric oncology patients during the COVID-19 pandemic. Special considerations for using antivirals in immunocompromised children, including those with malignancy, are available in a multicenter guidance statement.

References

Downloaded from https://www.covid19treatmentguidelines.nih.gov on 3/30/2021

Summary Recommendations

Potential Transplant and Cellular Therapy Candidates

- The COVID-19 Treatment Guidelines Panel (the Panel) recommends diagnostic molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for all potential solid organ transplant (SOT), hematopoietic cell transplant (HCT), and cell therapy candidates with signs and symptoms that suggest acute COVID-19 infection (AIII).
- The Panel recommends following the guidance from medical professional organizations that specialize in providing care for SOT, HCT, or cell therapy recipients when performing diagnostic molecular testing for SARS-CoV-2 in these patients (AIII).
- If SARS-CoV-2 is detected or if infection is strongly suspected, transplantation should be deferred, if possible (BIII).

Potential Transplant Donors

- The Panel recommends assessing all potential SOT donors for signs and symptoms that are associated with COVID-19 according to guidance from medical professional organizations (AIII).
- The Panel recommends performing diagnostic molecular testing for SARS-CoV-2 if symptoms are present (AIII).
- If SARS-CoV-2 is detected or if infection is strongly suspected, donation should be deferred (BIII).

- The Panel recommends assessing all potential HCT donors for signs and symptoms that are associated with COVID-19 according to guidance from medical professional organizations (AIII).
- The Panel recommends performing diagnostic molecular testing for SARS-CoV-2 when symptoms are present (AIII).
- If SARS-CoV-2 is detected or if infection is strongly suspected, donation should be deferred (BIII).

Transplant and Cellular Therapy Recipients with COVID-19

- The Panel recommends that clinicians who are treating COVID-19 in transplant and cellular therapy patients consult with a transplant specialist before adjusting immunosuppressive medications (AIII).
- When treating COVID-19, clinicians should pay careful attention to potential drug-drug interactions and overlapping toxicities with immunosuppressants, prophylactic antimicrobials, and other medications (AIII).

Rating of Recommendations:

- **A** = Strong
- **B** = Moderate
- **C** = Optional

Rating of Evidence:

- **I** = One or more randomized trials without major limitations
- **IIa** = Other randomized trials or subgroup analyses of randomized trials
- **IIb** = Nonrandomized trials or observational cohort studies
- **III** = Expert opinion

Introduction

Treating COVID-19 in solid organ transplant (SOT), hematopoietic cell transplant (HCT), and cellular immunotherapy recipients can be challenging due to the presence of coexisting medical conditions, transplant-related cytopenias, and the need for chronic immunosuppressive therapy to prevent graft rejection and graft-versus-host disease. Transplant recipients may also potentially have increased exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) given their frequent contact with the health care system. Since immunosuppressive agents modulate several aspects of the host’s immune response, the severity of COVID-19 could potentially be affected by the type and the intensity.
of the immunosuppressive effect of the agent, as well as by specific combinations of immunosuppressive agents. Some transplant recipients have medical comorbidities that have been associated with more severe cases of COVID-19 and a greater risk of mortality, which makes the attributable impact of transplantation on disease severity difficult to assess.

The American Association for the Study of Liver Diseases (AASLD), the International Society for Heart and Lung Transplantation, the American Society of Transplantation, the American Society for Transplantation and Cellular Therapy (ASTCT), the European Society for Blood and Marrow Transplantation (EBMT), and the Association of Organ Procurement Organizations provide guidance for clinicians who are caring for transplant recipients with COVID-19, as well as guidance for screening potential donors and transplant or cell therapy candidates. This section of the Guidelines complements these sources and focuses on considerations for managing COVID-19 in SOT, HCT, and cellular therapy recipients. The optimal management and therapeutic approach to COVID-19 in these populations is unknown. At this time, the procedures for evaluating and managing COVID-19 in transplant recipients are the same as for nontransplant patients (AIII). See Clinical Presentation of People with SARS-CoV-2 Infection, Antiviral Drugs That Are Approved or Under Evaluation for the Treatment of COVID-19, and Immune-Based Therapy Under Evaluation for Treatment of COVID-19 for more information. The medications that are used to treat COVID-19 may present different risks and benefits to transplant patients and nontransplant patients.

Assessment of SARS-CoV-2 Infection in Transplant and Cellular Therapy Candidates and Donors

The risk of transmission of SARS-CoV-2 from donors to candidates is unknown. The probability of donor or candidate infection with SARS-CoV-2 may be estimated by considering epidemiologic risk, obtaining clinical history, and testing with molecular techniques. No current testing strategy is sensitive enough or specific enough to totally exclude active infection. Living solid organ donors should be counseled on strategies to prevent infection and monitored for exposures and symptoms in the 14 days prior to scheduled transplant. HCT donors should practice good hygiene and avoid crowded places and large group gatherings during the 28 days prior to donation.

Assessment of Transplant and Cellular Therapy Candidates

Diagnostic molecular testing for SARS-CoV-2 is recommended for all potential SOT candidates with signs and symptoms that suggest acute COVID-19 infection (AIII). All potential SOT candidates should be assessed for exposure to COVID-19 and clinical symptoms that are compatible with COVID-19 before they are called in for transplantation and should undergo diagnostic molecular testing for SARS-CoV-2 shortly before SOT in accordance with guidance from medical professional organizations (AIII).

Clinicians should consider performing diagnostic testing for SARS-CoV-2 in all HCT and cellular therapy candidates who exhibit symptoms. All candidates should also undergo diagnostic molecular testing for SARS-CoV-2 shortly before HCT or cell therapy (AIII).

Assessment of Donors

The COVID-19 Treatment Guidelines Panel (the Panel) recommends following the guidance from medical professional organizations and assessing all potential HCT donors for exposure to COVID-19 and clinical symptoms that are compatible with COVID-19 before donation (AIII). Deceased donors should undergo screening for known symptoms and exposure to others with COVID-19 before transplantation, and decisions about using such organs should be made on a case-by-case basis (BIII). Recommendations for screening are outlined in the ASTCT and EBMT guidelines.
If SARS-CoV-2 Infection Is Detected or Strongly Suspected

If SARS-CoV-2 is detected or if infection is strongly suspected in a potential SOT donor or candidate, transplant should be deferred, if possible (BIII). The optimal disease-free interval before transplantation is not known. The risks of viral transmission should be balanced against the risks to the candidate, such as progression of the underlying disease and risk of mortality if the candidate does not receive the transplant. This decision should be continually reassessed as conditions evolve. For HCT and cellular therapy candidates, current guidelines recommend deferring transplants or immunotherapy procedures, including peripheral blood stem cell mobilization, bone marrow harvest, T cell collection, and conditioning/lymphodepletion in recipients who test positive for SARS-CoV-2 or who have clinical symptoms that are consistent with infection. Final decisions should be made on a case-by-case basis while weighing the risks of delaying or altering therapy for the underlying disease.

Transplant Recipients with COVID-19

SOT recipients who are receiving immunosuppressive therapy should be considered to be at increased risk for severe COVID-19. A national survey of 88 U.S. transplant centers conducted between March 24 and 31, 2020, reported that 148 SOT recipients received a diagnosis of COVID-19 infection (69.6% were kidney recipients, 15.5% were liver recipients, 8.8% were heart recipients, and 6.1% were lung recipients). COVID-19 was mild in 54% of recipients and moderate in 21% of recipients, and 25% of recipients were critically ill. Modification of immunosuppressive therapy during COVID-19 and the use of investigational therapies for treatment of COVID-19 varied widely among recipients. Initial reports of transplant recipients who were hospitalized with COVID-19 suggest mortality rates of up to 28%.

Risk of Graft Rejection

There have been no published reports of graft rejection in SOT recipients who received a diagnosis of COVID-19, although this may be due to a limited ability to perform biopsies. Acute cellular rejection should not be presumed in SOT recipients without biopsy confirmation in individuals with or without COVID-19. Similarly, immunosuppressive therapy should be initiated in recipients with or without COVID-19 who have rejection confirmed by a biopsy.

There is a lack of data on the incidence and clinical characteristics of SARS-CoV-2 infection in HCT and cellular therapy recipients. Experience with other respiratory viruses suggests that this population is at a high risk for severe disease, including increased rates of lower respiratory tract infection and mortality. Factors that may determine clinical severity include degree of cytopenia, time since transplant, intensity of the conditioning regimen, graft source, degree of mismatch, and the need for further immunosuppression to manage graft-versus-host disease. For other respiratory viruses, HCT recipients often exhibit prolonged viral shedding, which can have implications for infection prevention and for the timing of potential interventions.

Treatment of COVID-19 in Transplant Recipients

Currently, remdesivir, an antiviral agent, is the only drug approved by the Food and Drug Administration (FDA) for the treatment of COVID-19.

Preliminary data from a large randomized controlled trial have shown that a short course of dexamethasone (6 mg once daily for up to 10 days) can improve survival in patients with COVID-19 who are mechanically ventilated or who require supplemental oxygen. At this time, the risks and benefits of using dexamethasone in transplant recipients with COVID-19 who are receiving immunosuppressive therapy, which may include corticosteroids, are unknown.

The Panel’s recommendations for the use of remdesivir and dexamethasone in patients with COVID-19
can be found in the Therapeutic Management section.

A number of other investigational agents and drugs that are approved by the FDA for other indications are being evaluated for the treatment of COVID-19 (e.g., antiviral therapies, COVID-19 convalescent plasma) and its associated complications (e.g., immunomodulators, antithrombotic agents). In general, the considerations when treating COVID-19 are the same for transplant recipients as for the general population. When possible, treatment should be given as part of a clinical trial. The safety and efficacy of investigational agents and drugs that have been approved by the FDA for other indications are not well defined in transplant recipients. Moreover, it is unknown whether concomitant use of immunosuppressive agents to prevent allograft rejection in the setting of COVID-19 affects treatment outcome.

The use of antiviral or immune-based therapies for the treatment of COVID-19 can present additional challenges in transplant patients. Clinicians should pay special attention to the potential for drug-drug interactions and overlapping toxicities with concomitant medications, such as immunosuppressants that are used to prevent allograft rejection (e.g., corticosteroids, mycophenolate, and calcineurin inhibitors such as tacrolimus and cyclosporine), antimicrobials that are used to prevent opportunistic infections, and other medications. Dose modifications may be necessary for drugs that are used to treat COVID-19 in transplant recipients with pre-existing organ dysfunction. Adjustments to the immunosuppressive regimen should be individualized based on disease severity, the specific immunosuppressants used, the type of transplant, the time since transplantation, the drug concentration, and the risk of graft rejection. Clinicians who are treating COVID-19 in transplant patients should consult with a transplant specialist before adjusting immunosuppressive medication.

Certain therapeutics (e.g., remdesivir, tocilizumab) are associated with elevated levels of transaminases. For liver transplant recipients, the AASLD does not view abnormal liver biochemistries as a contraindication to using investigational or off-label therapeutics, although certain elevation thresholds may exclude patients from trials of some investigational agents. Close monitoring of liver biochemistries is warranted in patients with COVID-19, especially when they are receiving agents with a known risk of hepatotoxicity.

Calcineurin inhibitors, which are commonly used to prevent allograft rejection, have a narrow therapeutic index. Medications that inhibit or induce cytochrome P450 enzymes or P-glycoprotein may put patients who receive calcineurin inhibitors at risk of clinically significant drug-drug interactions, increasing the need for therapeutic drug monitoring and the need to assess for signs of toxicity or rejection. Similarly, transplant patients may be at a higher risk of adverse effects, particularly when their concomitant medications have overlapping toxicities. Specific concerns about the use of potential antiviral medications and immune-based therapy for COVID-19 in transplant patients are noted below. See Tables 2d and 4b for additional details.
Table 5. Special Concerns for Drugs That Are Being Evaluated for COVID-19 Treatment in Transplant Patients

<table>
<thead>
<tr>
<th>Drugs That Are Being Evaluated for COVID-19 Treatment</th>
<th>Concerns in Transplant Patients</th>
</tr>
</thead>
</table>
| Azithromycin | • Hepatotoxicity (cholestatic hepatitis, rare)
• Additive effect with other drugs that prolong the QTc interval. |
| Chloroquine and Hydroxychloroquine | • Moderate inhibition of CYP2D6.
• Inhibition of P-gp may increase levels of calcineurin inhibitors and mTOR inhibitors.
• Additive effect with other drugs that prolong the QTc interval. |
| Dexamethasone | • Moderate CYP3A4 inducer
• Potential for additional immunosuppression and increased risk of OIs. |
| HIV Protease Inhibitors | • RTV and other PIs are strong inhibitors of CYP3A4. Coadministration will increase concentrations of tacrolimus, cyclosporine, everolimus, sirolimus, and prednisone.
• TDM and dose adjustment of immunosuppressant is necessary. Monitor for calcineurin inhibitor-associated toxicities. |
| Interleukin-6 Inhibitors | • Use of IL-6 inhibitors may lead to increased metabolism of drugs that are CYP substrates. Effects on CYP may persist for weeks after therapy.
• AEs include neutropenia and an increase in transaminases. See Table 4b. |
| Remdesivir | • Increase in levels of serum transaminases.
• Accumulation of drug vehicle cyclodextrin in patients with kidney dysfunction. |
| Ribavirin | • Significant toxicities, including anemia, bradycardia, and an increase in serum transaminases levels. |

Key: AE = adverse effects; CYP = cytochrome P450; IL = interleukin; mTOR = mechanistic target of rapamycin; OI = opportunistic infection; P-gp = P-glycoprotein; PI = protease inhibitor; RTV = ritonavir; TDM = therapeutic drug monitoring

References

Special Considerations in People With Human Immunodeficiency Virus

Last Updated: October 9, 2020

<table>
<thead>
<tr>
<th>Summary Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention and Diagnosis of COVID-19</td>
</tr>
<tr>
<td>• The COVID-19 Treatment Guidelines Panel recommends using the same approach for the prevention and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with human immunodeficiency virus (HIV) as in people without HIV (AIII).</td>
</tr>
<tr>
<td>Management of COVID-19</td>
</tr>
<tr>
<td>• Recommendations for the triage, management, and treatment of COVID-19 in people with HIV are the same as those for the general population (AIII).</td>
</tr>
<tr>
<td>• In people with advanced HIV and suspected or documented COVID-19, HIV-associated opportunistic infections (OIs) should also be considered in the differential diagnosis of febrile illness (AIII).</td>
</tr>
<tr>
<td>• When starting treatment for COVID-19 in a patient with HIV, clinicians should pay careful attention to potential drug-drug interactions and overlapping toxicities among COVID-19 treatments, antiretroviral (ARV) medications, antimicrobial therapies, and other medications (AIII).</td>
</tr>
<tr>
<td>• People with HIV should be offered the opportunity to participate in clinical trials of vaccines and potential treatments for SARS-CoV-2 infection.</td>
</tr>
<tr>
<td>Management of HIV</td>
</tr>
<tr>
<td>• People with HIV who develop COVID-19, including those who require hospitalization, should continue their antiretroviral therapy (ART) and OI prophylaxis whenever possible (AIII).</td>
</tr>
<tr>
<td>• Clinicians treating COVID-19 in people with HIV should consult with an HIV specialist before adjusting or switching ARV medications (AIII).</td>
</tr>
<tr>
<td>• An ART regimen should not be switched or adjusted (i.e., by adding ARVs to the regimen) for the purpose of preventing or treating SARS-CoV-2 infection (AIII).</td>
</tr>
<tr>
<td>• For people who present with COVID-19 and a new diagnosis of HIV, clinicians should consult an HIV specialist to determine the optimal time to initiate ART (see text for more detailed discussion).</td>
</tr>
</tbody>
</table>

Rating of Recommendations: A = Strong; B = Moderate; C = Optional

Rating of Evidence: I = One or more randomized trials without major limitations; IIA = Other randomized trials or subgroup analyses of randomized trials; IIB = Nonrandomized trials or observational cohort studies; III = Expert opinion

Introduction

Approximately 1.2 million persons in the United States are living with human immunodeficiency virus (HIV). Most of these individuals are in care, and many are on antiretroviral therapy (ART) and have well-controlled disease.1 Similar to COVID-19, HIV disproportionately affects racial and ethnic minorities and persons of lower socioeconomic status in the United States;2 these demographic groups also appear to have a higher risk for worse outcomes with COVID-19. Information on HIV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coinfection is evolving rapidly. The sections below outline the current state of knowledge regarding the prevention and diagnosis of SARS-CoV-2 infection in people with HIV, treatment and clinical outcomes in people with HIV who develop COVID-19, and management of HIV during the COVID-19 pandemic. In addition to these Guidelines, the Department of Health and Human Services (HHS) Panel on Antiretroviral Guidelines for Adults and Adolescents has developed the Interim Guidance for COVID-19 and Persons with HIV.
Prevention of COVID-19 in People With HIV

The COVID-19 Treatment Guidelines Panel (the Panel) recommends using the same approach in advising persons with HIV on the strategies to prevent acquisition of SARS-CoV-2 infection as used for people without HIV (AIII). There is currently no clear evidence that any antiretroviral (ARV) medications can prevent the acquisition of SARS-CoV-2 infection.

Diagnostic and Laboratory Testing for COVID-19 in People With HIV

Diagnosis of COVID-19 in People With HIV

The Panel recommends using the same approach for diagnosis of SARS-CoV-2 infection in people with HIV as in those without HIV (see SARS-CoV-2 Testing) (AIII). There is currently no evidence that the performance characteristics of nucleic acid amplification testing (NAAT) for diagnosis of acute SARS-CoV-2 infection differ in people with and without HIV. The Panel recommends against the use of serologic testing as the sole basis for diagnosis of acute SARS-CoV-2 infection. However, if diagnostic serologic testing is performed, the results should be interpreted with caution, especially in patients with HIV because cross-reactivity between antibodies to SARS-CoV-2 and HIV has been reported.3

Correlation of CD4 Count in People With HIV and COVID-19

The normal range of CD4 T lymphocyte (CD4) cell counts in healthy adults is about 500 to 1,600 cells/mm³. Persons with HIV and CD4 count of ≥500 cells/mm³ have similar cellular immune function to persons without HIV. In people with HIV, a CD4 count <200 cells/mm³ meets the definition for AIDS. For patients on ART, the hallmark of treatment success is plasma HIV RNA below the level of detection by a PCR assay. Lymphopenia is a common laboratory finding in patients with COVID-19; in patients with HIV, clinicians should note that CD4 counts obtained during acute COVID-19 may not accurately reflect the patient’s HIV disease stage.

There have been some reports of persons with advanced HIV who have presented with COVID-19 and another coinfection, including Pneumocystis jirovecii pneumonia.4,5 In patients with advanced HIV with suspected or confirmed SARS-CoV-2 infection, clinicians should consider a broader differential diagnosis for clinical symptoms and consider consultation with an HIV specialist (AIII).

Clinical Presentation of COVID-19 in People With HIV

It is currently not known whether the incidence of SARS-CoV-2 infection or the rate of progression to symptomatic disease is higher in persons with HIV. Approximately 50% of persons with HIV in the United States are aged >50 years and many have comorbidities that are associated with more severe illness with COVID-19, including hypertension, diabetes mellitus, cardiovascular disease, tobacco use disorder, chronic lung disease, chronic liver disease, and cancer.6

There are several case reports and case series that describe the clinical presentation of COVID-19 in persons with HIV.7-17 These studies indicate that the clinical presentation of COVID-19 is similar in persons with and without HIV. Most of the published reports describe populations in which most of the individuals with HIV are on ART and have virologic suppression. Consequently, the current understanding of the impact of COVID-19 in persons with advanced HIV with low CD4 counts or those with persistent HIV viremia is limited.

Management of COVID-19 in People With HIV

Recommendations for the triage and management of COVID-19 in people with HIV are the same as those for the general population (AIII).
The treatment of COVID-19 in persons with HIV is the same as that for persons without HIV (AIII). When starting treatment for COVID-19 in patients with HIV, clinicians should pay careful attention to potential drug-drug interactions and overlapping toxicities among COVID-19 treatments, ARV medications, antimicrobial therapies, and other medications (AIII). Remdesivir should be used as recommended in the Remdesivir section of these Guidelines. There are no significant drug-drug interactions expected between remdesivir and ARV drugs. Dexamethasone should also be used as recommended in the Corticosteroids section of these Guidelines. Dexamethasone is an inducer of hepatic enzymes and could potentially lower levels of certain coadministered ARV drugs. However, this interaction is not expected to be clinically significant based on the short duration of dexamethasone therapy (up to 10 days) in the RECOVERY trial. Although some ARV drugs are being studied for the prevention and treatment of COVID-19, no agents have been shown to be effective.

People with HIV should be offered the opportunity to participate in clinical trials of vaccines and potential treatments for COVID-19. A variety of immunomodulatory therapies are prescribed empirically or administered as part of a clinical trial to treat severe COVID-19 disease. Data about whether these medications are safe to use in patients with HIV are lacking. If a medication is proven to reduce the mortality of patients with COVID-19 in the general population, it should also be used to treat COVID-19 in patients with HIV, unless data indicate that the medication is not safe or effective in this population.

Management of HIV in People With SARS-CoV-2/HIV Coinfection

Below are some general considerations regarding the management of HIV in people with SARS-CoV-2/HIV coinfection.

- ART and opportunistic infection prophylaxis should be continued in a patient with HIV who develops COVID-19, including in those who require hospitalization, whenever possible (AIII). ARV treatment interruption may lead to rebound viremia, and in some cases, emergence of drug resistance. If the ARV drugs are not on the hospital’s formulary, administer medications from the patient’s home supplies (if available).
- Clinicians treating COVID-19 in people with HIV should consult with an HIV specialist before adjusting or switching a patient’s ARV medications. An ART regimen should not be switched or adjusted (i.e., by adding ARVs to the regimen) for the purpose of preventing or treating SARS-CoV-2 infection (AIII). Many drugs, including some ARV agents (e.g., lopinavir/ritonavir, boosted darunavir, and tenofovir disoproxil fumarate/emtricitabine), have been or are being evaluated in clinical trials or are prescribed for off-label use for the treatment or prevention of SARS-CoV-2 infection. To date, lopinavir/ritonavir and darunavir/ritonavir have not been found to be effective (see Antiviral Therapy). Two retrospective studies suggest an effect of tenofovir disoproxil fumarate/emtricitabine in preventing SARS-CoV-2 acquisition or hospitalization or death associated with COVID-19; however, the significance of these findings is unclear as neither study adequately controlled for confounding variables such as age and comorbidities.
- For patients who are taking an investigational ARV medication as part of their HIV regimen, arrangements should be made with the investigational study team to continue the medication, if possible.
- For critically ill patients who require tube feeding, some ARV medications are available in liquid formulations and some, but not all, ARV pills may be crushed. Clinicians should consult an HIV specialist and/or pharmacist to assess the best way for a patient with a feeding tube to continue an effective ARV regimen. Information may be available in the drug product label or in this document.
- For people who present with COVID-19 and have either a new diagnosis of HIV or a history of...
HIV but are not taking ART, the optimal time to start or restart ART is currently unknown. For people with HIV who have not initiated ART or who have been off therapy for >2 weeks before presenting with COVID-19, the Panel recommends consultation with an HIV specialist regarding initiation or re-initiation of ART as soon as clinically feasible. If ART is started, maintaining treatment and linking patients to HIV care upon hospital discharge is critical. If an HIV specialist is not available, clinical consultation is available through the National Clinical Consultation Center warmline, Monday through Friday, 9 am to 8 pm EST.

Clinical Outcomes of COVID-19 in People With HIV

No significant differences in clinical outcomes have been noted in several small case series from Europe and the United States. Data from the Veterans Aging Cohort Study were analyzed to compare outcomes in 253 mostly male participants with HIV and COVID-19 who were matched with 504 participants with only COVID-19. In this comparison, there was no difference in COVID-19-related hospitalization, intensive care unit admission, intubation, or death in patients with or without HIV. In contrast, worse outcomes, including increased COVID-19 mortality rates, in people with HIV have been reported in cohort studies from the United States, the United Kingdom, and South Africa. In a multicenter cohort study of 286 patients with HIV and COVID-19 in the United States, lower CD4 count (i.e., <200 cells/mm³), despite virologic suppression, was associated with a higher risk for poor outcomes.

Special Considerations in Children and Pregnant Women With HIV Who Develop COVID-19

Currently, there is limited information about pregnancy and maternal outcomes in women with HIV who have COVID-19 and in children with HIV and COVID-19. Readers are referred to sections in these Guidelines on the management of COVID-19 in pregnancy and in children, and to the HHS Interim Guidance for COVID-19 and Persons with HIV.

References

Influenza and COVID-19

Last Updated: October 22, 2020

Summary Recommendations

<table>
<thead>
<tr>
<th>Summary Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza Vaccination</td>
</tr>
<tr>
<td>• Although data are lacking on influenza vaccination for persons with COVID-19, on the basis of practice for other acute respiratory infections, the Panel recommends that persons with COVID-19 should receive an inactivated influenza vaccine (BIII). The Centers for Disease Control and Prevention (CDC) has provided guidance on the timing of influenza vaccination for inpatients and outpatients with COVID-19 (see Interim Guidance for Routine and Influenza Immunization Services During the COVID-19 Pandemic).</td>
</tr>
<tr>
<td>Diagnosis of Influenza and COVID-19 When Influenza Viruses and SARS-CoV-2 Are Cocirculating</td>
</tr>
<tr>
<td>• Only testing can distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus infections and identify SARS-CoV-2 and influenza virus coinfection.</td>
</tr>
<tr>
<td>• When SARS-CoV-2 and influenza viruses are cocirculating, the Panel recommends testing for both viruses in all hospitalized patients with acute respiratory illness (AIII).</td>
</tr>
<tr>
<td>• When SARS-CoV-2 and influenza viruses are cocirculating, the Panel recommends influenza testing in outpatients with acute respiratory illness if the results will change clinical management of the patient (BIII).</td>
</tr>
<tr>
<td>• Testing for other pathogens should be considered depending on clinical circumstances, especially in patients with influenza in whom bacterial superinfection is a well-recognized complication.</td>
</tr>
<tr>
<td>• See the CDC Information for Clinicians on Influenza Virus Testing and the Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for more information.</td>
</tr>
<tr>
<td>Antiviral Treatment of Influenza When Influenza Viruses and SARS-CoV-2 Are Cocirculating</td>
</tr>
<tr>
<td>• The treatment of influenza is the same in all patients regardless of SARS-CoV-2 coinfection (AIII).</td>
</tr>
<tr>
<td>• The Panel recommends that hospitalized patients be started on empiric treatment for influenza with oseltamivir as soon as possible without waiting for influenza testing results (AIIb).</td>
</tr>
<tr>
<td>• Antiviral treatment of influenza can be stopped when influenza has been ruled out by nucleic acid detection assay in upper respiratory tract specimens for nonintubated patients and in both upper and lower respiratory tract specimens for intubated patients.</td>
</tr>
<tr>
<td>• For influenza treatment in hospitalized and non-hospitalized patients, see the CDC and IDSA recommendations on antiviral treatment of influenza.</td>
</tr>
</tbody>
</table>

Rating of Recommendations: A = Strong; B = Moderate; C = Optional

Rating of Evidence: I = One or more randomized trials without major limitations; Iia = Other randomized trials or subgroup analyses of randomized trials; Iib = Nonrandomized trials or observational cohort studies; III = Expert opinion

Introduction

Influenza activity in the United States during the 2020–2021 influenza season is difficult to predict and could vary geographically and by the extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community mitigation measures. During early 2020, sharp declines in influenza activity coincided with implementation of SARS-CoV-2 control measures in the United States and several Asian countries.¹⁻⁴ Very low influenza virus circulation was observed in Australia, Chile, and South Africa during the typical Southern Hemisphere influenza season in 2020.⁵ Clinicians should monitor local influenza and SARS-CoV-2 activity (e.g., by tracking local and state public health surveillance data and testing performed at health care facilities) to inform evaluation and management of patients with acute respiratory illness.
Influenza Vaccination

There are no data on the safety, immunogenicity, or effectiveness of influenza vaccines in patients with mild COVID-19 or those who are recovering from COVID-19. Therefore, the optimal timing for influenza vaccination in these patients is unknown. The safety and efficacy of vaccinating persons who have mild illnesses from other etiologies have been documented. On the basis of practice following other acute respiratory infections, the Panel recommends that persons with COVID-19 should receive an inactivated influenza vaccine (BIII). The Centers for Disease Control and Prevention (CDC) has provided guidance on the timing of influenza vaccination for inpatients and outpatients with COVID-19 (see Interim Guidance for Routine and Influenza Immunization Services During the COVID-19 Pandemic). It is not known whether dexamethasone or other immunomodulatory therapies for COVID-19 will affect the immune response to influenza vaccine. However, despite this uncertainty, as long as influenza viruses are circulating, an unvaccinated person with COVID-19 should receive the influenza vaccine once they have substantially improved or recovered from COVID-19. See influenza vaccine recommendations from CDC and the Advisory Committee on Immunization Practices.

Clinical Presentation of Influenza Versus COVID-19

The signs and symptoms of uncomplicated, clinically mild influenza overlap with those of mild COVID-19. Ageusia and anosmia can occur with both diseases, but these symptoms are more common with COVID-19 than with influenza. Fever is not always present in patients with either disease, particularly in patients who are immunosuppressed or elderly. Complications of influenza and COVID-19 can be similar, but the onset of influenza complications and severe disease typically occurs within a week of illness onset whereas the onset of severe COVID-19 usually occurs in the second week of illness. Because of the overlap in signs and symptoms, when SARS-CoV-2 and influenza viruses are cocirculating, diagnostic testing for both viruses in people with an acute respiratory illness is needed to distinguish between SARS-CoV-2 and influenza virus, and to identify SARS-CoV-2 and influenza virus coinfection. Coinfection with influenza A or B viruses and SARS-CoV-2 has been described in case reports and case series, but the frequency, severity, and risk factors for coinfection with these viruses versus for infection with either virus alone are unknown.

Which Patients Should be Tested for SARS-CoV-2 and influenza?

When influenza viruses and SARS-CoV-2 are cocirculating in the community, SARS-CoV-2 testing and influenza testing should be performed in all patients hospitalized with suspected COVID-19 or influenza (see Testing for SARS-CoV-2 Infection) (AIII). When influenza viruses and SARS-CoV-2 are cocirculating in the community, SARS-CoV-2 testing should be performed in outpatients with suspected COVID-19, and influenza testing can be considered in outpatients with suspected influenza if the results will change clinical management of the illness (BIII). Several multiplex assays that detect SARS-CoV-2 and influenza A and B viruses have received Food and Drug Administration Emergency Use Authorization and can provide results in 15 minutes to 8 hours on a single respiratory specimen. For information on available influenza tests, including clinical algorithms for testing of patients when SARS-CoV-2 and influenza viruses are cocirculating, see the CDC Information for Clinicians on Influenza Virus Testing and recommendations of the Infectious Diseases Society of America (IDSA) on the use of influenza tests and interpretation of testing results.

Which Patients Should Receive Antiviral Treatment of Influenza?

When SARS-CoV-2 and influenza viruses are cocirculating in the community, patients who require hospitalization and are suspected of having either or both viral infections should receive influenza antiviral treatment with oseltamivir as soon as possible without waiting for influenza testing results.
Treatment for influenza is the same for all patients regardless of SARS-CoV-2 coinfection (AIIb). See the CDC Influenza Antiviral Medications: Summary for Clinicians, including clinical algorithms for antiviral treatment of patients with suspected or confirmed influenza when SARS-CoV-2 and influenza viruses are cocirculating, and the IDSA Clinical Practice Guidelines recommendations on antiviral treatment of influenza.

If a diagnosis of COVID-19 or another etiology is confirmed and if the result of an influenza nucleic acid detection assay from an upper respiratory tract specimen is negative:

- In a Patient Who is Not Intubated: Antiviral treatment for influenza can be stopped.
- In a Patient Who is Intubated: Antiviral treatment for influenza should be continued and if a lower respiratory tract specimen (e.g., endotracheal aspirate) can be safely obtained, it should be tested by influenza nucleic acid detection. If the lower respiratory tract specimen is also negative, influenza antiviral treatment can be stopped.

Treatment Considerations for Hospitalized Patients With Suspected or Confirmed SARS-CoV-2 and Influenza Virus Coinfection

- Corticosteroids, which may be used for the treatment of COVID-19, may prolong influenza viral replication and viral RNA detection and may be associated with poor outcomes.14,15
- Oseltamivir has no activity against SARS-CoV-2.16 Oseltamivir does not have any known interactions with remdesivir.
- Standard-dose oseltamivir is well absorbed even in critically ill patients. For patients who cannot tolerate oral or enterically administered oseltamivir (e.g., because of gastric stasis, malabsorption, or gastrointestinal bleeding), intravenous peramivir is an option.14 There are no data on peramivir activity against SARS-CoV-2.
- CDC does not recommend inhaled zanamivir and oral baloxavir for the treatment of influenza in hospitalized patients because of insufficient safety and efficacy data (see the CDC Influenza Antiviral Medications: Summary for Clinicians). There are no data on zanamivir activity against SARS-CoV-2. Baloxavir has no activity against SARS-CoV-2.16
- Based upon limited data, the co-occurrence of community-acquired secondary bacterial pneumonia with COVID-19 appears to be infrequent and may be more common with influenza.17,18 Typical bacterial causes of community-acquired pneumonia with severe influenza are Staphylococcus aureus (methicillin-resistant S. aureus [MRSA] and methicillin-susceptible S. aureus [MSSA]), Streptococcus pneumoniae, and group A Streptococcus.14
- Patients with COVID-19 who develop new respiratory symptoms with or without fever or respiratory distress, and without a clear diagnosis, should be evaluated for the possibility of nosocomial influenza.

References

